TLE2ToCZML/node_modules/satellite.js/lib/propagation/dscom.js

395 lines
9.4 KiB
JavaScript

/*!
* satellite-js v5.0.0
* (c) 2013 Shashwat Kandadai and UCSC
* https://github.com/shashwatak/satellite-js
* License: MIT
*/
"use strict";
Object.defineProperty(exports, "__esModule", {
value: true
});
exports["default"] = dscom;
var _constants = require("../constants");
/*-----------------------------------------------------------------------------
*
* procedure dscom
*
* this procedure provides deep space common items used by both the secular
* and periodics subroutines. input is provided as shown. this routine
* used to be called dpper, but the functions inside weren't well organized.
*
* author : david vallado 719-573-2600 28 jun 2005
*
* inputs :
* epoch -
* ep - eccentricity
* argpp - argument of perigee
* tc -
* inclp - inclination
* nodep - right ascension of ascending node
* np - mean motion
*
* outputs :
* sinim , cosim , sinomm , cosomm , snodm , cnodm
* day -
* e3 -
* ee2 -
* em - eccentricity
* emsq - eccentricity squared
* gam -
* peo -
* pgho -
* pho -
* pinco -
* plo -
* rtemsq -
* se2, se3 -
* sgh2, sgh3, sgh4 -
* sh2, sh3, si2, si3, sl2, sl3, sl4 -
* s1, s2, s3, s4, s5, s6, s7 -
* ss1, ss2, ss3, ss4, ss5, ss6, ss7, sz1, sz2, sz3 -
* sz11, sz12, sz13, sz21, sz22, sz23, sz31, sz32, sz33 -
* xgh2, xgh3, xgh4, xh2, xh3, xi2, xi3, xl2, xl3, xl4 -
* nm - mean motion
* z1, z2, z3, z11, z12, z13, z21, z22, z23, z31, z32, z33 -
* zmol -
* zmos -
*
* locals :
* a1, a2, a3, a4, a5, a6, a7, a8, a9, a10 -
* betasq -
* cc -
* ctem, stem -
* x1, x2, x3, x4, x5, x6, x7, x8 -
* xnodce -
* xnoi -
* zcosg , zsing , zcosgl , zsingl , zcosh , zsinh , zcoshl , zsinhl ,
* zcosi , zsini , zcosil , zsinil ,
* zx -
* zy -
*
* coupling :
* none.
*
* references :
* hoots, roehrich, norad spacetrack report #3 1980
* hoots, norad spacetrack report #6 1986
* hoots, schumacher and glover 2004
* vallado, crawford, hujsak, kelso 2006
----------------------------------------------------------------------------*/
function dscom(options) {
var epoch = options.epoch,
ep = options.ep,
argpp = options.argpp,
tc = options.tc,
inclp = options.inclp,
nodep = options.nodep,
np = options.np;
var a1;
var a2;
var a3;
var a4;
var a5;
var a6;
var a7;
var a8;
var a9;
var a10;
var cc;
var x1;
var x2;
var x3;
var x4;
var x5;
var x6;
var x7;
var x8;
var zcosg;
var zsing;
var zcosh;
var zsinh;
var zcosi;
var zsini;
var ss1;
var ss2;
var ss3;
var ss4;
var ss5;
var ss6;
var ss7;
var sz1;
var sz2;
var sz3;
var sz11;
var sz12;
var sz13;
var sz21;
var sz22;
var sz23;
var sz31;
var sz32;
var sz33;
var s1;
var s2;
var s3;
var s4;
var s5;
var s6;
var s7;
var z1;
var z2;
var z3;
var z11;
var z12;
var z13;
var z21;
var z22;
var z23;
var z31;
var z32;
var z33;
// -------------------------- constants -------------------------
var zes = 0.01675;
var zel = 0.05490;
var c1ss = 2.9864797e-6;
var c1l = 4.7968065e-7;
var zsinis = 0.39785416;
var zcosis = 0.91744867;
var zcosgs = 0.1945905;
var zsings = -0.98088458;
// --------------------- local variables ------------------------
var nm = np;
var em = ep;
var snodm = Math.sin(nodep);
var cnodm = Math.cos(nodep);
var sinomm = Math.sin(argpp);
var cosomm = Math.cos(argpp);
var sinim = Math.sin(inclp);
var cosim = Math.cos(inclp);
var emsq = em * em;
var betasq = 1.0 - emsq;
var rtemsq = Math.sqrt(betasq);
// ----------------- initialize lunar solar terms ---------------
var peo = 0.0;
var pinco = 0.0;
var plo = 0.0;
var pgho = 0.0;
var pho = 0.0;
var day = epoch + 18261.5 + tc / 1440.0;
var xnodce = (4.5236020 - 9.2422029e-4 * day) % _constants.twoPi;
var stem = Math.sin(xnodce);
var ctem = Math.cos(xnodce);
var zcosil = 0.91375164 - 0.03568096 * ctem;
var zsinil = Math.sqrt(1.0 - zcosil * zcosil);
var zsinhl = 0.089683511 * stem / zsinil;
var zcoshl = Math.sqrt(1.0 - zsinhl * zsinhl);
var gam = 5.8351514 + 0.0019443680 * day;
var zx = 0.39785416 * stem / zsinil;
var zy = zcoshl * ctem + 0.91744867 * zsinhl * stem;
zx = Math.atan2(zx, zy);
zx += gam - xnodce;
var zcosgl = Math.cos(zx);
var zsingl = Math.sin(zx);
// ------------------------- do solar terms ---------------------
zcosg = zcosgs;
zsing = zsings;
zcosi = zcosis;
zsini = zsinis;
zcosh = cnodm;
zsinh = snodm;
cc = c1ss;
var xnoi = 1.0 / nm;
var lsflg = 0;
while (lsflg < 2) {
lsflg += 1;
a1 = zcosg * zcosh + zsing * zcosi * zsinh;
a3 = -zsing * zcosh + zcosg * zcosi * zsinh;
a7 = -zcosg * zsinh + zsing * zcosi * zcosh;
a8 = zsing * zsini;
a9 = zsing * zsinh + zcosg * zcosi * zcosh;
a10 = zcosg * zsini;
a2 = cosim * a7 + sinim * a8;
a4 = cosim * a9 + sinim * a10;
a5 = -sinim * a7 + cosim * a8;
a6 = -sinim * a9 + cosim * a10;
x1 = a1 * cosomm + a2 * sinomm;
x2 = a3 * cosomm + a4 * sinomm;
x3 = -a1 * sinomm + a2 * cosomm;
x4 = -a3 * sinomm + a4 * cosomm;
x5 = a5 * sinomm;
x6 = a6 * sinomm;
x7 = a5 * cosomm;
x8 = a6 * cosomm;
z31 = 12.0 * x1 * x1 - 3.0 * x3 * x3;
z32 = 24.0 * x1 * x2 - 6.0 * x3 * x4;
z33 = 12.0 * x2 * x2 - 3.0 * x4 * x4;
z1 = 3.0 * (a1 * a1 + a2 * a2) + z31 * emsq;
z2 = 6.0 * (a1 * a3 + a2 * a4) + z32 * emsq;
z3 = 3.0 * (a3 * a3 + a4 * a4) + z33 * emsq;
z11 = -6.0 * a1 * a5 + emsq * (-24.0 * x1 * x7 - 6.0 * x3 * x5);
z12 = -6.0 * (a1 * a6 + a3 * a5) + emsq * (-24.0 * (x2 * x7 + x1 * x8) + -6.0 * (x3 * x6 + x4 * x5));
z13 = -6.0 * a3 * a6 + emsq * (-24.0 * x2 * x8 - 6.0 * x4 * x6);
z21 = 6.0 * a2 * a5 + emsq * (24.0 * x1 * x5 - 6.0 * x3 * x7);
z22 = 6.0 * (a4 * a5 + a2 * a6) + emsq * (24.0 * (x2 * x5 + x1 * x6) - 6.0 * (x4 * x7 + x3 * x8));
z23 = 6.0 * a4 * a6 + emsq * (24.0 * x2 * x6 - 6.0 * x4 * x8);
z1 = z1 + z1 + betasq * z31;
z2 = z2 + z2 + betasq * z32;
z3 = z3 + z3 + betasq * z33;
s3 = cc * xnoi;
s2 = -0.5 * s3 / rtemsq;
s4 = s3 * rtemsq;
s1 = -15.0 * em * s4;
s5 = x1 * x3 + x2 * x4;
s6 = x2 * x3 + x1 * x4;
s7 = x2 * x4 - x1 * x3;
// ----------------------- do lunar terms -------------------
if (lsflg === 1) {
ss1 = s1;
ss2 = s2;
ss3 = s3;
ss4 = s4;
ss5 = s5;
ss6 = s6;
ss7 = s7;
sz1 = z1;
sz2 = z2;
sz3 = z3;
sz11 = z11;
sz12 = z12;
sz13 = z13;
sz21 = z21;
sz22 = z22;
sz23 = z23;
sz31 = z31;
sz32 = z32;
sz33 = z33;
zcosg = zcosgl;
zsing = zsingl;
zcosi = zcosil;
zsini = zsinil;
zcosh = zcoshl * cnodm + zsinhl * snodm;
zsinh = snodm * zcoshl - cnodm * zsinhl;
cc = c1l;
}
}
var zmol = (4.7199672 + (0.22997150 * day - gam)) % _constants.twoPi;
var zmos = (6.2565837 + 0.017201977 * day) % _constants.twoPi;
// ------------------------ do solar terms ----------------------
var se2 = 2.0 * ss1 * ss6;
var se3 = 2.0 * ss1 * ss7;
var si2 = 2.0 * ss2 * sz12;
var si3 = 2.0 * ss2 * (sz13 - sz11);
var sl2 = -2.0 * ss3 * sz2;
var sl3 = -2.0 * ss3 * (sz3 - sz1);
var sl4 = -2.0 * ss3 * (-21.0 - 9.0 * emsq) * zes;
var sgh2 = 2.0 * ss4 * sz32;
var sgh3 = 2.0 * ss4 * (sz33 - sz31);
var sgh4 = -18.0 * ss4 * zes;
var sh2 = -2.0 * ss2 * sz22;
var sh3 = -2.0 * ss2 * (sz23 - sz21);
// ------------------------ do lunar terms ----------------------
var ee2 = 2.0 * s1 * s6;
var e3 = 2.0 * s1 * s7;
var xi2 = 2.0 * s2 * z12;
var xi3 = 2.0 * s2 * (z13 - z11);
var xl2 = -2.0 * s3 * z2;
var xl3 = -2.0 * s3 * (z3 - z1);
var xl4 = -2.0 * s3 * (-21.0 - 9.0 * emsq) * zel;
var xgh2 = 2.0 * s4 * z32;
var xgh3 = 2.0 * s4 * (z33 - z31);
var xgh4 = -18.0 * s4 * zel;
var xh2 = -2.0 * s2 * z22;
var xh3 = -2.0 * s2 * (z23 - z21);
return {
snodm: snodm,
cnodm: cnodm,
sinim: sinim,
cosim: cosim,
sinomm: sinomm,
cosomm: cosomm,
day: day,
e3: e3,
ee2: ee2,
em: em,
emsq: emsq,
gam: gam,
peo: peo,
pgho: pgho,
pho: pho,
pinco: pinco,
plo: plo,
rtemsq: rtemsq,
se2: se2,
se3: se3,
sgh2: sgh2,
sgh3: sgh3,
sgh4: sgh4,
sh2: sh2,
sh3: sh3,
si2: si2,
si3: si3,
sl2: sl2,
sl3: sl3,
sl4: sl4,
s1: s1,
s2: s2,
s3: s3,
s4: s4,
s5: s5,
s6: s6,
s7: s7,
ss1: ss1,
ss2: ss2,
ss3: ss3,
ss4: ss4,
ss5: ss5,
ss6: ss6,
ss7: ss7,
sz1: sz1,
sz2: sz2,
sz3: sz3,
sz11: sz11,
sz12: sz12,
sz13: sz13,
sz21: sz21,
sz22: sz22,
sz23: sz23,
sz31: sz31,
sz32: sz32,
sz33: sz33,
xgh2: xgh2,
xgh3: xgh3,
xgh4: xgh4,
xh2: xh2,
xh3: xh3,
xi2: xi2,
xi3: xi3,
xl2: xl2,
xl3: xl3,
xl4: xl4,
nm: nm,
z1: z1,
z2: z2,
z3: z3,
z11: z11,
z12: z12,
z13: z13,
z21: z21,
z22: z22,
z23: z23,
z31: z31,
z32: z32,
z33: z33,
zmol: zmol,
zmos: zmos
};
}